Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Neuroscience Bulletin ; (6): 1454-1468, 2021.
Artigo em Chinês | WPRIM | ID: wpr-951946

RESUMO

Visual object recognition in humans and nonhuman primates is achieved by the ventral visual pathway (ventral occipital-temporal cortex, VOTC), which shows a well-documented object domain structure. An on-going question is what type of information is processed in the higher-order VOTC that underlies such observations, with recent evidence suggesting effects of certain visual features. Combining computational vision models, fMRI experiment using a parametric-modulation approach, and natural image statistics of common objects, we depicted the neural distribution of a comprehensive set of visual features in the VOTC, identifying voxel sensitivities with specific feature sets across geometry/shape, Fourier power, and color. The visual feature combination pattern in the VOTC is significantly explained by their relationships to different types of response-action computation (fight-or-flight, navigation, and manipulation), as derived from behavioral ratings and natural image statistics. These results offer a comprehensive visual feature map in the VOTC and a plausible theoretical explanation as a mapping onto different types of downstream response-action systems.

2.
Neuroscience Bulletin ; (6): 1454-1468, 2021.
Artigo em Inglês | WPRIM | ID: wpr-922640

RESUMO

Visual object recognition in humans and nonhuman primates is achieved by the ventral visual pathway (ventral occipital-temporal cortex, VOTC), which shows a well-documented object domain structure. An on-going question is what type of information is processed in the higher-order VOTC that underlies such observations, with recent evidence suggesting effects of certain visual features. Combining computational vision models, fMRI experiment using a parametric-modulation approach, and natural image statistics of common objects, we depicted the neural distribution of a comprehensive set of visual features in the VOTC, identifying voxel sensitivities with specific feature sets across geometry/shape, Fourier power, and color. The visual feature combination pattern in the VOTC is significantly explained by their relationships to different types of response-action computation (fight-or-flight, navigation, and manipulation), as derived from behavioral ratings and natural image statistics. These results offer a comprehensive visual feature map in the VOTC and a plausible theoretical explanation as a mapping onto different types of downstream response-action systems.


Assuntos
Animais , Humanos , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Lobo Occipital , Reconhecimento Visual de Modelos , Estimulação Luminosa , Lobo Temporal , Vias Visuais/diagnóstico por imagem , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA